Dimensions as Virtual Items: Improving the predictive ability of top-N recommender systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensions as Virtual Items: Improving the predictive ability of top-N recommender systems

Traditionally, recommender systems for the web deal with applications that have two dimensions, users and items. Based on access data that relate these dimensions, a recommendation model can be built and used to identify a set of N items that will be of interest to a certain user. In this paper we propose a multidimensional approach, called DaVI (Dimensions as Virtual Items), that consists in i...

متن کامل

Using Contextual Information as Virtual Items on Top-N Recommender Systems

Traditionally, recommender systems for the Web deal with applications that have two dimensions, users and items. Based on access logs that relate these dimensions, a recommendation model can be built and used to identify a set of N items that will be of interest to a certain user. In this paper we propose a method to complement the information in the access logs with contextual information with...

متن کامل

Top-N recommendations from expressive recommender systems

Normalized nonnegative models assign probability distributions to users and random variables to items; see [Stark, 2015]. Rating an item is regarded as sampling the random variable assigned to the item with respect to the distribution assigned to the user who rates the item. Models of that kind are highly expressive. For instance, using normalized nonnegative models we can understand users’ pre...

متن کامل

Promoting Cold-Start Items in Recommender Systems

As one of the major challenges, cold-start problem plagues nearly all recommender systems. In particular, new items will be overlooked, impeding the development of new products online. Given limited resources, how to utilize the knowledge of recommender systems and design efficient marketing strategy for new items is extremely important. In this paper, we convert this ticklish issue into a clea...

متن کامل

Top-N Recommender System via Matrix Completion

Top-N recommender systems have been investigated widely both in industry and academia. However, the recommendation quality is far from satisfactory. In this paper, we propose a simple yet promising algorithm. We fill the user-item matrix based on a low-rank assumption and simultaneously keep the original information. To do that, a nonconvex rank relaxation rather than the nuclear norm is adopte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Processing & Management

سال: 2013

ISSN: 0306-4573

DOI: 10.1016/j.ipm.2012.07.009